

Insulation - more than just U-values

Healthy Buildings 2020, 27th February, London

Mark Lynn

Vice-Chair

The Alliance for Sustainable Building Products

Managing Director

ERI Ltd - Thermafleece

NATURAL FIBRE INSULATION GROUP

An industry collaboration to better communicate the benefits of natural fibre insulation products and systems

Group activities

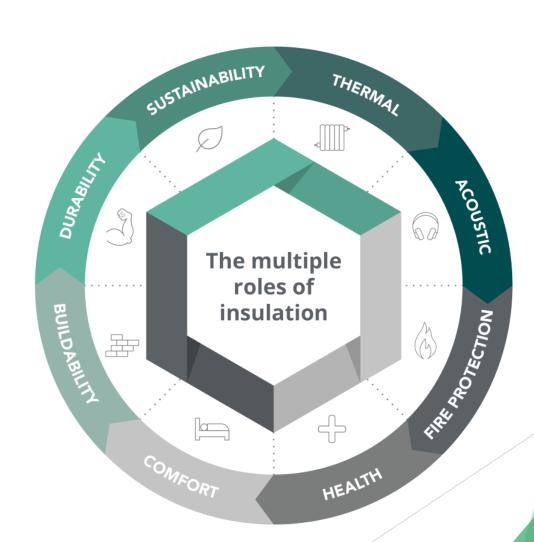
Education, training and events

CPDs/events/trade shows

- Developed a CPD 'An introduction to natural fibre insulation'.
- Regular appearances at trade shows such as Futurebuild, Timber Expo/UK Construction Week.

Briefing papers

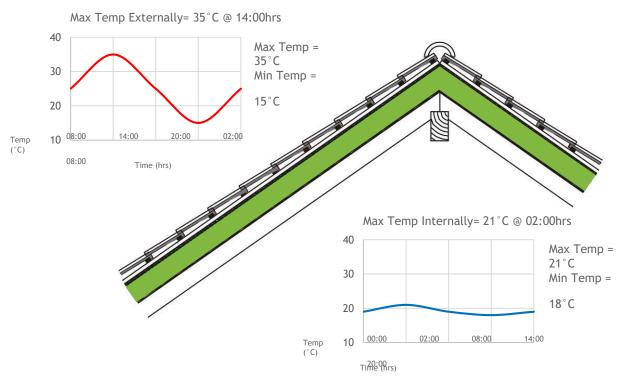
- 3-part series on Environmental Product Declarations (EPDs)
- The multiple roles of insulation
- An introduction to breathability
- Health and wellbeing benefits of natural fibre insulation products and systems



The Multiple Roles of Insulation

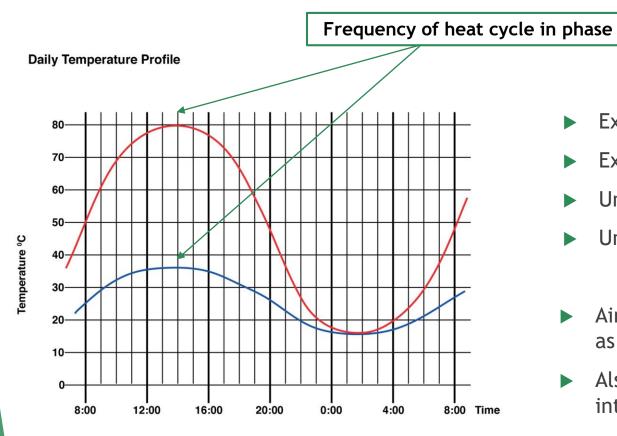
Insulation is approx. 50% of the volume of a building's fabric and profoundly influences many aspects of building performance

Balanced consideration of this multi-functionality often makes natural fibre insulation the superior choice


Thermal Performance

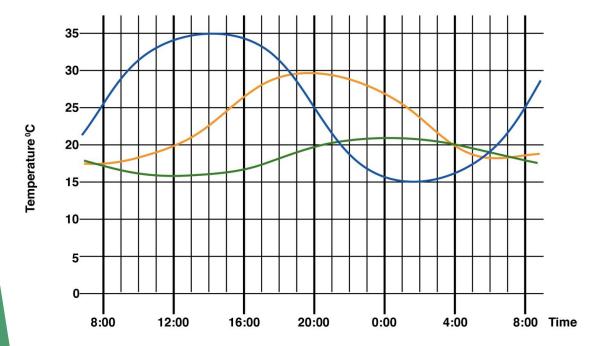
- ► U-value uses steady state thermal conductivity measurements.
- ▶ Ignores ability of materials to absorb, diffuse and release heat.
- Doesn't consider how building fabric modulates heat cycles.
- ► We should consider how Internal and external heat cycles are phased in relation to each other.
- ▶ We should consider how peaks and troughs in internal temperature are moderated.
- ▶ Means Phase Shift should be a design consideration.

Phase Shift Explained


- Internal and external temperature goes in cycles.
- When the peaks of each are in line, the temperature cycles are in phase.
- When they don't the cycles are out of phase.

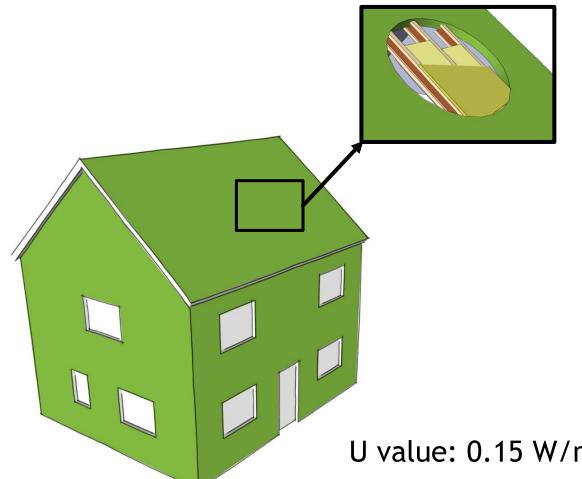
- Phase shifting takes the peaks of heat cycles out of phase as far as possible.
- NOT to be confused with phase change.

Phase Shift Explained



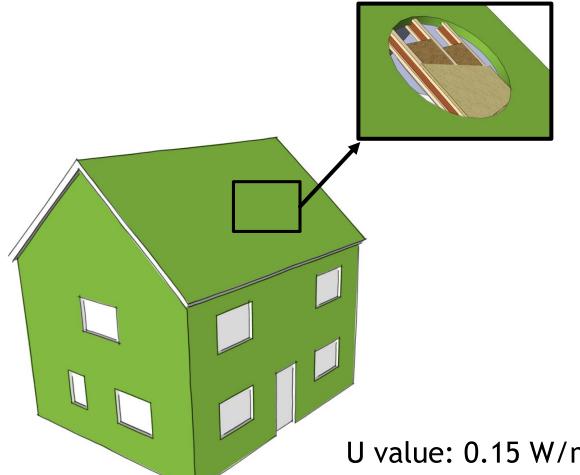
Temperature under the roof covering External temperature

- External To max 35 °C @ 14:00 hrs
- ► External T^o min 15 °C @ 02:00 hrs
- ► Under Roof To max 80 °C @ 14:00 hrs
- ► Under Roof To min 15 °C @ 14:00 hrs
- Aim is to shift maximums as far apart as possible.
- Also need to lower amplitude or intensity of heat inside.
- ▶ In a 24hr cycle optimum shift is 12hr.


Phase Shift Explained

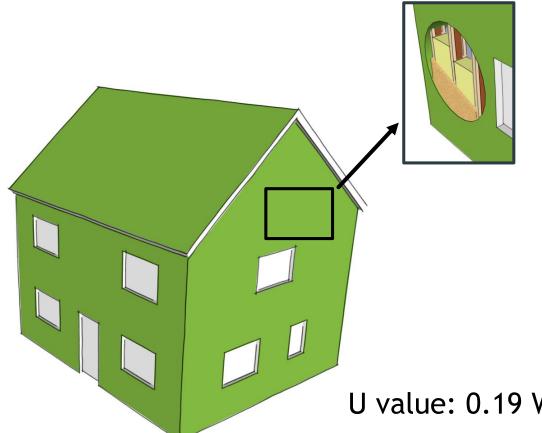
Daily Temperature Profile with various insulations

Temperature under the roof covering
Internal room temperature with mineral wool
Internal room temperature with wood fibre insulation


- Frequency of heat cycles out of phase.
- Wood fibre heat maximums out of phase by 12hrs = 12hr phase shift.
- Mineral wood heat maximums out of phase by 6 hrs = 6 hr phase shift
- Achieved by:
 - Higher density
 - Higher specific heat capacity
 - Low thermal conductivity

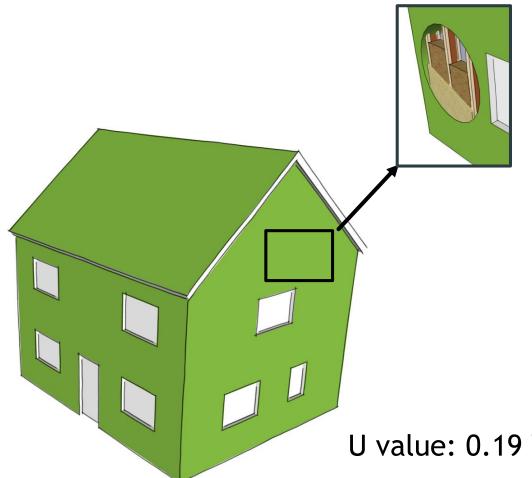
Roof build up:

- ▶ 12.5mm Plasterboard
- Vapour control layer
- 240mm I-joist with Glass wool insulation
- ▶ 40mm Mineral wool
- External roof finish


U value: 0.15 W/m²K. Phase Shift: 7.1 hours

Roof build up:

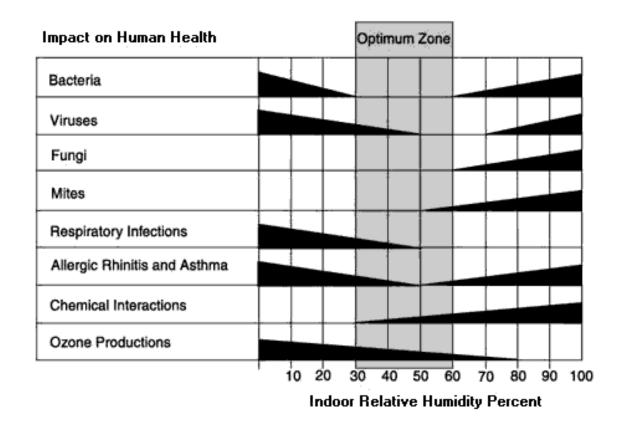
- ▶ 12.5mm Plasterboard
- Vapour control layer
- ► 240mm I joist with flexible wood fibre insulation
- ▶ 40mm wood fibreboard
- External roof finish


U value: 0.15 W/m²K. Phase Shift: 13 hours

Conventional Wall build up:

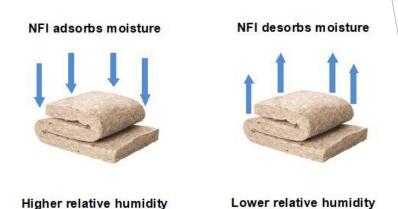
- ▶ 12.5mm Plasterboard
- Vapour control layer
- ▶ 140mm PIR
- ▶ 11mm OSB
- Breather membrane
- Cavity / Brickwork

U value: 0.19 W/m²K. Phase Shift: 6.8 hours

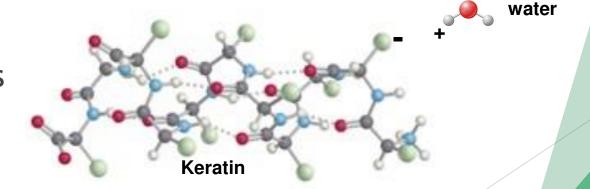

Reverse Wall build up:

- ► 12.5mm Plasterboard
- ▶ 15mm OSB
- ► 140mm flexible wood fibre
- 60mm wood fibreboard
- Cavity / Brickwork

U value: 0.19 W/m²K. Phase Shift: 12 hours

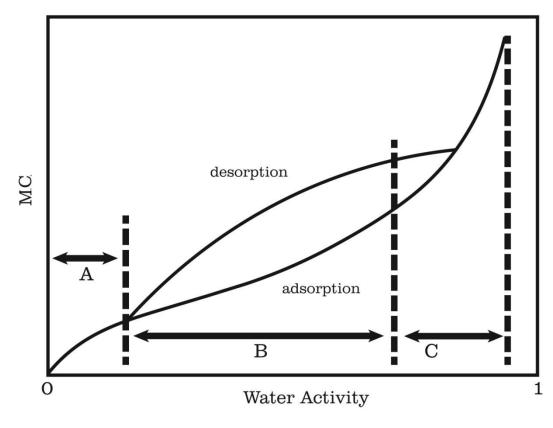

Humidity Regulation

- ► Moisture can cause health problems and damage the building fabric
- Breathable materials help keep humidity within the optimum zone for human health.
- Breathable materials bind moisture in a harmless way.



Breathable Natural Fibre Insulation

► Adjusts its moisture content to be in balance with surrounding humidity. Adjusts surrounding humidity to be in balance with its moisture content.


Is able to bind water molecules in a harmless way.

Is vapour open

Humidity Buffering

Zone B is the humidity buffering zone

A – strongly bound

B – less strongly bound

C – free water

Low VOC's

		3 Day		28 Day			
Parameter	Thermally Bonded Sheep's Wood Wood Fibre		AgBB Requirement	Thermally Bonded Sheep's Wool	Thermally Bonded Flexi Wood Fibre	AgBB Requirement	
TVOC	< 0.01 mg/m ³	2.0 mg/m ³	≤ 10 mg/m³	< 0.01 mg/m ³	2.0 mg/m ³	≤ 1 mg/m³	
CMR Substances	< 1 µg/m³	<1 µg/m³	≤ 10 µg/m³	< 1 μg/m³	<1 µg/m³	≤ 10 µg/m³	
Formaldehyde	< 0.01 mg/m ³	< 0.01 mg/m ³	-	< 0.01 mg/m ³	0.019 mg/m ³	≤ 0.12 mg/m ³	

	Wood Fibreboard (under floor)						
Parameter	3Day	AgBB Requirement	28 Day	AgBB Requirement			
TVOC	0.52 mg/m ³	≤ 10 mg/m ³	0.02 mg/m ³	≤ 1 mg/m ³			
CMR Substances	< 1 µg/m³	≤ 10 µg/m³	<1 µg/m³	≤ 10 µg/m³			
Formaldehyde	< 0.01 mg/m ³	-	0.003 mg/m ³	\leq 0.12 mg/m ³			

Formaldehyde Reduction - Sheep's Wool Insulation

- ► Sheep's wool achieved a reduction from 90 mg/m³ to <3 mg/m³ Formaldehyde in 7 hrs with 10-15% desorption.</p>
- Similar tests by WRONZ achieved reduction from 7mg/m³ to <0.1mg/m³ in 45 mins with no recorded desorption.</p>

Acoustic Absorption

		Practical Absorption Coefficients (BS EN ISO 354:2003)						
Product	Thickness	125 Hz	250 Hz	500 Hz	1kHz	2kHz	4KHz	a_w
Rockwool RWA45	50 mm	0.1	0.54	1	1.05	1.04	1.02	0.85
Thermally Bonded Sheep's Wool 31kg/m³	50 mm	0.2	0.55	0.85	0.9	1	1	0.85

▶ Sheep's wool has similar performance to Rock at 70% of the density.

Fire

- ► NFI's treated with inorganic mineral based fire retardants free from halogens & organophosphorus.
- ► NFI's are appropriate to use in accordance with relevant sections of Part B of UK Building Regulations.
- ► NFI's don't play a role in the developmental stages of a fire.
- ► NFI's have natural charring behaviour limits flame spread.

Sign up to our newsletter, download briefing papers and see our conference presentations at:

www.asbp.org.uk

Building Products

Contact ASBP

Contact me

www.asbp.org.uk

info@asbp.org.uk

+44 (0)20 7704 3501

@asbp_uk

Mark Lynn

mark@thermafleece.com

+44 (0)17684 86285

