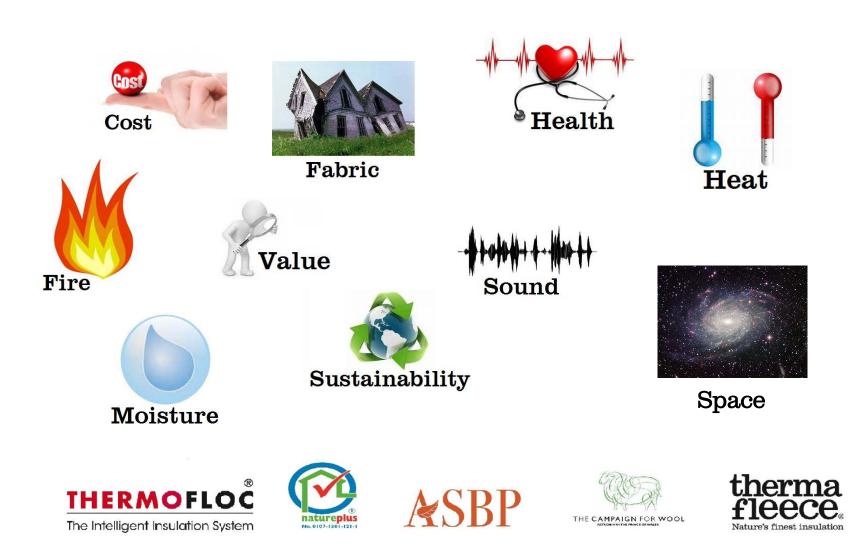
Natural Insulation The Positive Impacts

Mark Lynn Managing Director ERI Ltd Director ASBP



Insulation Priorities

Common Natural Fibres

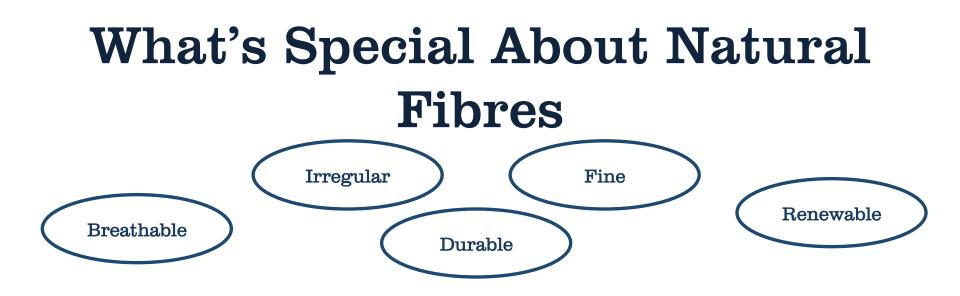
• Annual production of commercially significant fibres >36 mmt p.a. (excl. Wood, straw, paper) = $60 + \text{mmt CO}_2$ sequestered

What's Good for Insulation

• Need to be affordable and readily available

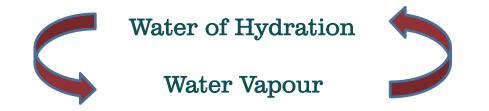
What's Good for Insulation

Fibres need to be fine •



Individual properties provide performance but performance is enhanced when properties work together. For example:

Fine fibre = high internal surface area combined with breathability = extremely large breathable surface = efficient moisture control


Renewable fibres = carbon sequestration combined with durability = larger carbon sink

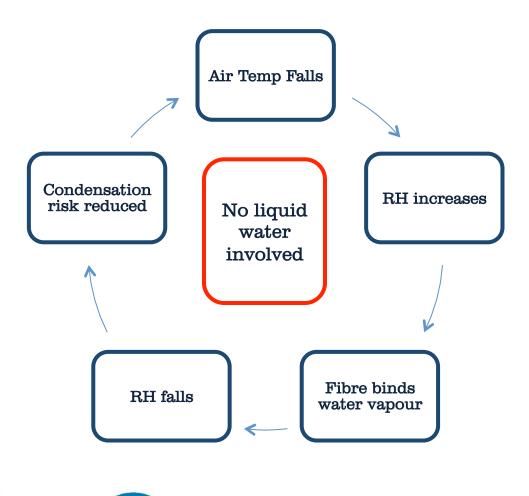
Breathability

- Unique to Natural Fibres
- Natural fibres bind water vapour through hydrogen bonding.
- No liquid water involved. Water is constantly bound as water of hydration and released as water vapour (gas).

- Process is driven by the fibre trying to achieve an equilibrium moisture content (emc) with surrounding air
- **emc** is achieved when fibre is not losing or gaining water
- As relative humidity (RH) increases fibre needs to reach a higher emc and vice versa.

Breathability

- Since NFI uses fine fibres most of the activity is at the fibre surface.
- Combine with high internal surface area means efficient capture and release of water since very little energy is taken to transport moisture from and to the fibre surface.
- emc varies very little with temperature so its ability to absorb and release moisture is almost entire dependent on the RH of the surrounding air.
- E.g. @ 70% RH the emc of wool is 17% at 25°C and 5°C
- Over the same temperature range the amount of water vapour air can hold @ 70% RH falls from 16g/m³ to 5g/m³.



Breathability

Acoustics

Natural Fibre Insulation can provide comparable or better acoustic insulation compared to mineral based products at a lower density. Variation in fibre diameter and length help absorb different frequnecies. **Absorption coefficient** – fraction of sound energy absorbed by a material at a given frequency.

		Frequency (Hertz)					
		125	250	500	1K	2K	4K
Product 50mm	Nominal Density	Practical Absorption Coefficient					
Rockwool RWA 45	45 kgm ⁻³	0.20	0.50	0.85	1.00	1.00	1.00
Rockwool RW 3	60 kgm ⁻³	0.11	0.60	0.96	0.94	0.92	0.82
Thermafleece UltraWool	31 kgm ⁻³	0.20	0.55	0.85	0.90	1.00	1.00

$$1 = 100\%, 0 = 0\%$$

Heat

- Thermal conductivity of natural fibre insulation varies between 0.035
 WmK⁻¹ to 0.044 WmK⁻¹
- Value varies little with moisture content up to the fibre saturation point (approx 30% mc)
- Makes insulation vary stable across a range of humidities

Sustainablity

- Local
- Safe to handle
- Rapidly renewable
- Impacts are beneficial and vary depending on product and source but all natural fibres sequester atmospheric carbon for their lifetime.

Finally

- Consider all your priorities.
- Natural fibres are often the best answer.

THANK YOU

