Aspects of Breathability Natural Fibre Insulation

Mark Lynn M.D – Eden Renewable Innovations Ltd Director – A.S.B.P.

What is "Breathability"?

- 1. The ability of a product or material to allow the diffusion of water vapour **vapour permeability**? or,
- 2. The ability of a product or material to actively buffer humidity through capture & release of water vapour – humidity buffering? or,
- 3. The ability of a porous material to move moisture through capillary transfer?, or
- 4. All of the above vapour permeability & humidity buffering?

vapour permeable materials = breathability? humidity buffer materials = hygroscopicity? porous capillary materials = capillarity?

CONFUSING?

Hygroscopicity

- Hygroscopicity is a material property like density
- To have use, it needs scale and context
- Hygroscopicity isn't always useful or beneficial
- Not all hygroscopic materials buffer humidity or breathe
- To usefully buffer humidity a hygroscopic material must:
 - Capture <u>and</u> release water under normal conditions
 - Capture <u>and</u> release water without significantly altering the physical nature of the material or its surroundings

Hygroscopic Classification

• Shows moisture content change with RH% and Temp

Classification	Mass gain at 24h @ 25°C & 80% RH
Slightly hygroscopic	$<\!\!2\% \text{ and } \ge 0.2\%$
Hygroscopic	$<15\%$ and $\ge 2\%$
Very hygroscopic	≥ 15%
Deliquescent	Forms a Liquid

- Doesn't show how available or "bound" the water or how much work it can do.
- For this we need to look at the concept of **water activity**

Water Activity (a_w)

• Well illustrated in a multi-component system where moisture is in balance and structural and biological stability maintained

Water Activity (a_w)

- RH generating potential of a material vs pure water
- Consider an enclosed building element
- All components are in thermodynamic equilibrium
- Chemical potentials of water in materials (e.g. NFI) and void are the same

$$\mathcal{\mu}_{w}^{\text{Material}} = \mathcal{\mu}_{w}^{\text{vapour}}$$

- V.P exerted by the material $(\mathbf{P}_{\rm w})$ and V.P in the void $(P_{\rm w})$ are the same
- a_w is P_w relative to the V.P exerted by pure water in an enclosed system (Saturation VP P_o)

Water Activity (a_w)

- Water activity is calculated in the same way as ERH.
- Divide the VP (P_w) of material or void by the SVP (P_o)
- In the case of the void, we express this as % and call it Equilibrium Relative Humidity (ERH)

$$ERH = \frac{P_w}{P_0} \times 100\%$$

• In the case of the material, we express it as a fraction and call it Water Activity (a_w)

$$a_w = \frac{P_w}{P_0}$$

• a_w allows us to think about moisture in a material in the same way we think of moisture in the air $a_w = ERH$

Water Activity Zones

Zone B is the humidity buffering zone

Sorption Isotherms & a_w

Moisture Content

Type I capillary porous materials (brick)

Type II – natural fibres

Type III – anti-caking agents

- Widely used for moisture properties of materials & systems. Occasionally referenced in building context
- Important for understanding humidity buffering

a_w versus Moisture Content

• Material can have a high **m.c.** but a low a_w

- Higher m.c.
- Stronger water bonds
- Lower V.P.
- Lower a_w

- Lower m.c,
- Weaker water bonds
- Higher V.P.
- Higher a_w

a_w & Microbial Activity

- Microorganisms have a limiting a_w below which they will not grow. Value same as the limiting RH%
- a_w not m.c determines the lower limit of available water
- Each microorganism has an a_w level below which it cannot grow.

Organism	Limiting a_w
Most bacteria	<0.9
Most yeasts	<0.8
Most fungal activity	<0.7
All microbial activity inhibited	<0.6

Source: AECB Factsheet – Moisture Requirements for Mould Growth

- Moisture migrates from regions of high a_w to regions of low a_w not between areas of unequal m.c.
- Can influence the direction of moisture movement

ASBP The Alliance for Sustainable Building Products

a_w Comparison

Brick has high a_w at low m.c. Coir has low a_w at low m.c.

Temperature

• Temperature decreases, V.P from NFI decreases, a_w decreases, ERH decreases.

m.c.	Temp	ERH	a_{w}	VP	Dew Point
14%	25°C	68.0%	0.68	$16.3 \mathrm{mmHg}$	18.7 °C
14%	20 °C	64.4%	0.64	11.2 mm Hg	13.0 °C
14%	15 °C	60.0%	0.60	7.1 mm Hg	7.4 °C

• Temperature decreases, saturation point of air increases & RH% increases

 a_w decreases with decreasing Temp. RH% increases with decreasing Temp.

Sorption Isotherms & Temperature

ASBP The Alliance for Sustainable Building Products

Humidity Buffering

As T^o falls RH rises and a_w of NFI falls.

What does this mean?

•NFI wants to lower RH to the same level as its a_w .

- •Air wants to raise a_w to the same level as its RH. Who wins?
- •Moisture content of NFI changes by approx 300-900 g/m³ for every 0.05 change in a_w (5% ERH eq.)

•Moisture content of air changes by approx 1-2 g/m³ for every 5% change in RH.

Result:

Small increase in a_w of NF, large decrease in RH of air.

Hurdle Technology

- A.K.A "combined methods technology"
- Intelligent combination of hurdles or controlling factors to secure microbial safety, durability, etc.
- Vapour openness and moisture buffering are hurdles.
- Different hurdles have different impacts in different situations but they are all controlling factors.

Breathability in Building

Herring? or Hurdle?

